Includes 96 Flash Cards!

\[2(4 - y) \]
\[\frac{x}{3} = -6 \]
\[\sqrt{196x^4} \]
\[x^2 + 9x + 14 \]
\[5x^2 - 35 \]

Perfect for Home and School!
Master the Basic Skills!

A Kelley Wingate Publication
Table of Contents

Operations with Real Numbers
Operations with Real Numbers4
Patterns..5
Adding Real Numbers....................7
Subtracting Real Numbers...............9
Multiplying Real Numbers..............11
Dividing Real Numbers...............12
Order of Operations....................13
Real-Number Operations with Absolute Value..............16

Variables and Equations
Substitution................................17
Combining Like Terms..................19
Solving One-Step Equations............21
Solving Basic Equations...............23
Solving Equations with Variables on Both Sides........26
Problem Solving.........................27
Solving Inequalities with Multiple Operations........29
Solving Inequalities with Variables on Both Sides........30
Practice Solving Inequalities........31

Polynomials
Adding and Subtracting
Polynomials................................33
Raising Exponents to a Power........34
Multiplying Exponents................35
Dividing Exponents.....................36
Negative Exponents....................37
Products of Polynomials...............38
Multiplying Binomials...............40
Squaring Binomials....................41
Area and Perimeter.....................42

Factoring
Factoring Monomials from Polynomials........43
Factoring Trinomials of the Form $ax^2 + bx + c$..............44
Factoring Trinomials in Quadratic Form.............48
Factoring Difference of Two Squares...............49
Factoring Perfect Square Trinomials...............50
Factoring the Sum or Difference of Two Cubes........51
Solving Equations by Factoring........52
Problem Solving.........................53

Rational Expressions
Dividing Monomials.....................55
Simplifying Rational Expressions........56
Dividing Polynomials...................57
Dividing Polynomials by Synthetic Division...........59
Multiplying Rational Expressions........60
Dividing Rational Expressions........61
Adding and Subtracting Rational Expressions........62
Solving Fractional Equations........63

Ratios and Proportions
Proportions..................................64
Problem Solving with Proportions........65

Graphing
Graphing Ordered Pairs.................67
Plotting Points............................69
Graphing Ordered Pairs...............70
Graphing Linear Equations...............71
Slope-Intercept Form....................73
X- and Y-Intercepts.....................76

X- and Y-Intercepts
Writing an Equation of a Line............77
Graphing Linear Inequalities............79
Solving Systems of Linear Equations by Graphing........82
Solving Systems of Linear Equations by Addition Method....85
Solving Systems of Linear Equations by Multiplication with Addition Method........86
Solving Systems of Linear Equations by Substitution........87

Radicals
Simplifying Radicals....................88
Multiplying Radicals....................90
Dividing Radicals.......................91
Adding and Subtracting Radical Expressions........92
Solving Equations by Taking Square Roots........93

Factoring
Solving Quadratic Equations by Factoring........94
Solving Equations by Taking Square Roots...............95
Solving Quadratic Equations by Taking Square Roots...............96

Logical Reasoning and Application
Probability Experiment—Directional Page........97
Probability Experiment...............98

Answer Key..................................104

© 2009, Carson-Dellosa Publishing Company, Inc., Greensboro, North Carolina 27425. The purchase of this material entitles the buyer to reproduce worksheets and activities for classroom use only—not for commercial resale. Reproduction of these materials for an entire school or district is prohibited. No part of this book may be reproduced (except as noted above), stored in a retrieval system, or transmitted in any form or by any means (mechanically, electronically, recording, etc.) without the prior written consent of Carson-Dellosa Publishing Co., Inc.

Printed in the USA • All rights reserved. ISBN 978-1-60418-734-2
Operations with Real Numbers

Integers are . . . −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5 . . .
There is a set of three dots before and after the list of integers. This means that the numbers continue, and there is no largest or smallest integer.

Looking at a number line, the integers to the right of zero are positive integers and the integers to the left of zero are negative integers. Zero is neither a positive integer nor a negative integer.

Natural numbers are all positive integers.
 1, 2, 3, 4, 5 . . .

Whole numbers are comprised of zero and all of the positive integers.
 0, 1, 2, 3, 4, 5 . . .

Variables are letters of the alphabet that represent a number in mathematics. For example, in the problem 5x = 15, x is the variable.

The quotient of two integers is a rational number. A rational number can be written as \(\frac{t}{x} \), in the case that \(t \) and \(x \) are integers and \(x \) is not equal to zero (\(x \neq 0 \)). When a rational number is written this way, it is called a fraction.

It is important to note that every integer is a rational number. A decimal number, such as 12.6, is also considered a rational number. All rational numbers can be written as repeating or terminating decimals.

An irrational number is a number whose decimal expansion does not terminate and never repeats. For example \(\pi = 3.141592604 \ldots \)

Real numbers are made up of rational numbers and irrational numbers.
Operations with Real Numbers

Patterns

The French mathematician Blaise Pascal developed a triangular pattern to describe the coefficients for the expansion of \((a + b)^n\), for consecutive values of \(n\) in rows. This pattern is referred to as Pascal’s triangle.

In the triangular formation below, note that \((a + b)^0 = 1\) and \((a + b)^1 = a + b\).

Part A. Fill in the blanks in Pascal’s triangle to extend the pattern.

\[
\begin{array}{ccccccccc}
\hline
n = 0 & & & & & & & & 1 \\
\hline
n = 1 & 1 & 1 & & & & & & \\
\hline
n = 2 & 1 & 2 & 1 & & & & & \\
\hline
n = 3 & 1 & 3 & 3 & 1 & & & & \\
\hline
n = 4 & 1 & & & & 6 & & & \\
\hline
n = 5 & & & & & & & 10 & & \\
\hline
n = 6 & & & & & & & & & \\
\hline
n = 7 & & & & & & & & & \\
\hline
n = 8 & & & & & & & & & \\
\hline
n = 9 & & & & & & & & & \\
\hline
n = 10 & & & & & & & & & \\
\hline
\end{array}
\]

Part B. Use Pascal’s triangle to find the coefficients of the expansion \((a + b)\).

1. \((a + b)^3 = \quad a^3 + \quad a^2b + \quad ab^2 + \quad b^3\)

2. \((a + b)^6 = \quad a^6 + \quad a^5b + \quad a^4b^2 + \quad a^3b^3 + \quad a^2b^4 + \quad ab^5 + \quad b^6\)

3. \((a + b)^4 = \quad a^4 + \quad a^3b + \quad a^2b^2 + \quad ab^3 + \quad b^4\)

4. \((a + b)^7 = \quad a^7 + \quad a^6b + \quad a^5b^2 + \quad a^4b^3 + \quad a^3b^4 + \quad a^2b^5 + \quad ab^6 + \quad b^7\)
Operations with Real Numbers

Patterns

Carefully study the patterns of numbers to complete each pattern.

1. 130, 120, 110, 100, __________, __________, __________, __________

2. 20, 200, 2,000, 20,000, __________, __________, __________

3. 3, 6, 7, 14, 15, 30, 31, __________, __________, __________, __________

4. 1, 4, 9, 16, 25, __________, __________, __________, __________, __________

5. 1, 6, 10, 9, 14, 13, __________, __________, __________, __________

6. \(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7} \) __________, __________, __________

7. 17, 15, 25, 23, 33, 31, __________, __________, __________, __________

8. 7, 21, 63, 189, __________, __________, __________

9. 800, 80, 8, 0.8, 0.08, __________, __________, __________, __________

Challenge! The following is a special pattern called the Fibonacci sequence. See if you can discover and complete this interesting pattern.

1, 1, 2, 3, 5, 8, 13, __________, __________, __________, __________, __________
Operations with Real Numbers

Adding Real Numbers

Add.

1. \(-7 + 6 = -1\)

2. \(2.7 + (-4.8) = \)

3. \(-55 + (-8) + (-4) + 54 = \)

4. \(3.54 + 4.27 + 7.43 = \)

5. \(10 + 7 + (-7) + (-10) = \)

6. \(16 + 21 + (-3) + 7 = \)

7. \(10 + 7 + (-16) + 9 + (-30) = \)

8. \(5.8 + 8.4 = \)

9. \(2.76 + (-6.56) + (-9.72) = \)

10. \(8 + (-7) = \)

11. \(2\frac{3}{5} + 4\frac{3}{7} = \)

12. \(-8\frac{3}{5} + 3\frac{3}{7} = \)

13. \(3\frac{5}{8} + (-1\frac{2}{3}) + 2 = \)

14. \(-5\frac{3}{4} + (-2\frac{3}{4}) + 8 = \)

15. \(7.3 + (3.9) = \)

16. \(-21 + 12 + (-1) + (-17) = \)

17. \(7.867 + (-5.329) = \)

18. \(-2\frac{3}{5} + (-5\frac{3}{7}) + 3 = \)

19. \(3 + 12 + (-13) + 36 = \)

20. \(-3\frac{1}{6} + (-9\frac{3}{12}) + 6 = \)
Operations with Real Numbers

Adding Real Numbers

Add.

1. \(2 \frac{3}{5} + (-3 \frac{2}{5}) + (-6) = \)
2. \(21 + 9 + (-6) + 7 = \)
3. \(12 + (-9) + 17 = \)
4. \(2.54 + (-5.87) + (-32.65) = \)
5. \(1 + (-5) + (-5) + 1 = \)
6. \(21 + 3 + (-13) + 22 = \)
7. \(3 + (-3) + 4 + (-5) = \)
8. \(3.3 + (-3.4) + 5.5 = \)
9. \(3.6 + (-2.5) + (-5.5) = \)
10. \(-0.6 + (-0.56) + 3 = \)
11. \(2 + 5 + (-3) = \)
12. \(4.524 + 7.342 = \)
13. \(-7 \frac{2}{4} + 2 \frac{3}{4} = \)
14. \(34 + (-13) + 18 + 0 + 34 = \)
15. \(8.43 + (-10.98) + (-3.23) = \)
16. \(2.54 + (-5.21) + (-6.34) = \)
17. \(-2 \frac{1}{3} + (-5 \frac{7}{10}) + (-7) = \)
18. \(-1 \frac{2}{3} + (-3 \frac{3}{5}) + 4 = \)
19. \(2 \frac{1}{2} + 6 \frac{1}{2} = \)
20. \(4 \frac{3}{5} + (-3 \frac{2}{5}) + (-8) = \)
Operations with Real Numbers

Subtracting Real Numbers

\[10 - (-4) = 10 + 4 = 14 \]

Subtract.

1. \(9 - (-32) = \)

2. \(-99 - (-42) = \)

3. \(\frac{3}{5} - \frac{7}{8} = \)

4. \(0 - 21 = \)

5. \(45 - 301 = \)

6. \(9.432 + 4.348 - 44.938 = \)

7. \(-43 - 6 = \)

8. \(9 - (-2) - 8 - 7 = \)

9. \(35 - 67 - 85 - 21 - 12 = \)

10. \(12 - 7 - (-16) - 9 - (-34) = \)

11. \(18 - (-13) = \)

12. \(\frac{-2}{5} - \frac{3}{4} - (-\frac{4}{5}) = \)

13. \(-\frac{4}{7} - \frac{1}{3} - (\frac{2}{3}) = \)

14. \(3.434 - 7.294 = \)

15. \(8 - 2.8 = \)

16. \(8 - (-14) = \)

17. \(3.9 - 4.9 = \)

18. \(-7 - (-3) = \)

19. \(2.19 - 7.8 - 8.31 = \)

20. \(38 - 39 - (-13) = \)
Operations with Real Numbers

Subtracting Real Numbers

\[4 - (-5) = 4 + 5 = 9 \]

Subtract.

1. \(-9 - (-5) = \)

2. \(321 - (-34) = \)

3. \(\frac{2}{3} - \frac{4}{5} = \)

4. \(4 - (-8) = \)

5. \(5.34 - 9.9 - 3.65 = \)

6. \(-19 - 8 = \)

7. \(245 - 32 - (-36) = \)

8. \(44 - 35 - 34 - 32 = \)

9. \(8 - (-5) - 7 - 9 = \)

10. \(43 - 88 - 35 - 21 = \)

11. \(121 - 45 = \)

12. \(-45 - 5 = \)

13. \(-\frac{2}{3} - \frac{1}{3} - (-\frac{1}{3}) = \)

14. \(-\frac{4}{5} - \frac{1}{2} - \frac{2}{5} = \)

15. \(4 - 12.9 = \)

16. \(7 - (-33) = \)

17. \(3.4 - 7.4 = \)

18. \(2.456 - 4.345 - 5.457 = \)

19. \(23 - (-21) = \)

20. \(4.346 - 0.4537 = \)
Operations with Real Numbers

Multiplying Real Numbers

\((-2)(-3) = 6\)

Multiply.
1. \(4 \cdot 9 = \)
2. \(-4 \cdot 12 = \)

3. \((-\frac{5}{9})(8.8) = \)
4. \((-3)(0) = \)

5. \((-3)(-9) = \)
6. \(6(23) = \)

7. \((12)(-3)(4) = \)
8. \((-5)(-5)(-5) = \)

9. \((5)(2)(-1) = \)
10. \((7)(-9)(-12) = \)

11. \((-\frac{2}{3})(-1.6) = \)
12. \(-7(-7) = \)

13. \((54.2)(-3.55) = \)
14. \((2.22)(-1.11) = \)

15. \((7.44)(3.2)(4.3) = \)
16. \((2.4)(-1.4) = \)

17. \((-\frac{3}{5})(\frac{3}{5}) = \)
18. \((-\frac{4}{5})(2.2) = \)

19. \(-8 \cdot 12 = \)
20. \((0)(2)(-213) = \)
Answer Key

Name ______________________ Date __________________

Operations with Real Numbers

Patterns

Carefully study the patterns of numbers to complete each pattern.

1. 130, 120, 110, 100, __________
2. 20, 200, 2,000, 20,000, __________
3. 3, 6, 7, 14, 15, 30, 31, __________
4. 1, 4, 9, 16, 25, __________
5. 1, 6, 5, 10, 9, 14, 13, __________
6. 1 2 3 4 5 6 7 8 9 10 __________
7. 17, 15, 25, 23, 33, 31, __________
8. 7, 21, 63, 189, __________
9. 800, 80, 8, 0.8, 0.08 __________

Challenge! The following is a special pattern called the Fibonacci sequence.

Add:
1. 2.7 + (−4.8) = __________
2. 5.5 + (−8) + (−4) + 54 = __________
3. 10 + 7 + (−7) + (−10) = __________
4. 10 + 7 + (−16) + 9 + (−30) = __________
5. 6.5 + (−6.56) + (−9.72) = __________
6. 2 + 3 + 4 + 3 = __________
7. 3 + 5 + 8 + (−1) + 2 = __________
8. 7.3 + (−3.9) = __________
9. 7.867 + (−5.329) = __________
10. 3 + 12 + (−13) + 36 = __________
Operations with Real Numbers

Adding Real Numbers

<table>
<thead>
<tr>
<th>Expression</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{3}{5} + \left[\frac{3}{2} \right] \times \frac{4}{5})</td>
<td>(-6 \frac{4}{5})</td>
</tr>
<tr>
<td>12 + (-9)</td>
<td>20</td>
</tr>
<tr>
<td>1 + (-5) + (-5) + 1</td>
<td>-8</td>
</tr>
<tr>
<td>3 \times (-3) + 4 \times (-5)</td>
<td>-1</td>
</tr>
<tr>
<td>3.6 \times \left(2.5\right) + 5.5</td>
<td>-4.4</td>
</tr>
<tr>
<td>10 \times \left(0.56\right) + 3</td>
<td>1.84</td>
</tr>
<tr>
<td>2 \times 5 \times -3</td>
<td>-4</td>
</tr>
<tr>
<td>(-\frac{7}{4} + \frac{3}{2})</td>
<td>-4 \frac{3}{4}</td>
</tr>
<tr>
<td>13.84 + \left(10.98\right) + \left(3.23\right)</td>
<td>5.78</td>
</tr>
<tr>
<td>(-\frac{1}{3} + \frac{2}{5})</td>
<td>10.57</td>
</tr>
<tr>
<td>(-\frac{1}{3} + \frac{2}{5})</td>
<td>-4 \frac{3}{5}</td>
</tr>
<tr>
<td>2 \times \frac{3}{2} + \frac{1}{2}</td>
<td>9</td>
</tr>
</tbody>
</table>

Subtracting Real Numbers

<table>
<thead>
<tr>
<th>Expression</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 \times \left(-32\right)</td>
<td>41</td>
</tr>
<tr>
<td>3 \times \frac{7}{8} - \frac{11}{40}</td>
<td>29</td>
</tr>
<tr>
<td>45 - 301</td>
<td>-256</td>
</tr>
<tr>
<td>(-43) - 6</td>
<td>-49</td>
</tr>
<tr>
<td>35 - 67 - 85 - 21 - 12</td>
<td>-150</td>
</tr>
<tr>
<td>18 - (-13)</td>
<td>31</td>
</tr>
<tr>
<td>(-\frac{4}{7} - \frac{1}{3})</td>
<td>-1 \frac{5}{7}</td>
</tr>
<tr>
<td>18 - \left(-14\right)</td>
<td>22</td>
</tr>
<tr>
<td>3.9 - 4.9</td>
<td>-1</td>
</tr>
<tr>
<td>2.19 - 7.8 - 8.33</td>
<td>-13.92</td>
</tr>
</tbody>
</table>

Subtracting Real Numbers

<table>
<thead>
<tr>
<th>Expression</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 - (-6)</td>
<td>16</td>
</tr>
<tr>
<td>10 \times 4</td>
<td>40</td>
</tr>
</tbody>
</table>

Multiplying Real Numbers

<table>
<thead>
<tr>
<th>Expression</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 \times 9</td>
<td>36</td>
</tr>
<tr>
<td>(-\frac{1}{8}) \times (8.8)</td>
<td>-0.48</td>
</tr>
<tr>
<td>(-3) \times (-9)</td>
<td>27</td>
</tr>
<tr>
<td>\left(12\right) \times \left(\frac{3}{4}\right)</td>
<td>-144</td>
</tr>
<tr>
<td>\left(5\right) \times \left(\frac{1}{2}\right)</td>
<td>-10</td>
</tr>
<tr>
<td>\left(-\frac{3}{4}\right) \times \left(-1.6\right)</td>
<td>1.96</td>
</tr>
<tr>
<td>\left(54.2\right) \times \left(-3.55\right)</td>
<td>-192.41</td>
</tr>
<tr>
<td>\left(7.44\right) \times \left(3.2\right)</td>
<td>102.3744</td>
</tr>
<tr>
<td>\left(-\frac{3}{5}\right) \times \left(-\frac{2}{5}\right)</td>
<td>1.76</td>
</tr>
<tr>
<td>\left(-\frac{3}{5}\right) \times \left(-\frac{2}{5}\right)</td>
<td>0</td>
</tr>
</tbody>
</table>