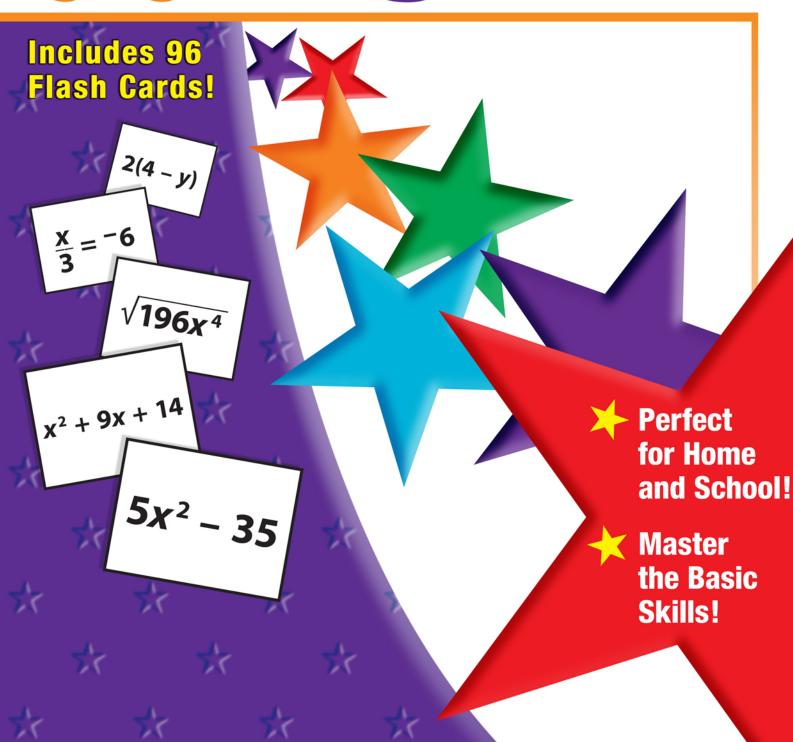


GRADES

6-9

Algebra



Algebra

Table of Contents

Operations with Real Numbers
Operations with Real Numbers4
Patterns5
Adding Real Numbers7
Subtracting Real Numbers9
Multiplying Real Numbers11
Dividing Real Numbers12
Order of Operations13
Real-Number Operations
with Absolute Value16
Variables and Equations
Substitution17
Combining Like Terms19
Solving One-Step Equations21
Solving Basic Equations23
Solving Equations with
Variables on Both Sides26
Problem Solving27
Solving Inequalities with
Multiple Operations29
Solving Inequalities with
Variables on Both Sides 30
Practice Solving Inequalities31
Polynomials
Adding and Subtracting
Polynomials33
Raising Exponents to a Power 34
Multiplying Exponents35
Dividing Exponents 36
Negative Exponents37
Products of Polynomials 38
Multiplying Binomials40
Squaring Binomials41
Area and Perimeter42
Factoring
Factoring Monomials
from Polynomials43
Factoring Trinomials of the
Form $x^2 + hx + c$ 44

Factoring Trinomials of the Form $ax^2 + bx + c$ 46
Factoring Trinomials in
Quadratic Form48
Factoring Difference of Two Squares49
Factoring Perfect Square
Trinomials50 Factoring the Sum or Difference
of Two Cubes51
Solving Equations by Factoring52
Problem Solving53 Rational Expressions
Dividing Monomials55
Simplifying Rational Expressions 56
Dividing Polynomials57
Dividing Polynomials by Synthetic Division59
Multiplying Rational Expressions 60
Dividing Rational Expressions61
Adding and Subtracting
Rational Expressions62 Solving Fractional Equations63
Ratios and Proportions
Proportions64
Problem Solving with
Proportions65
Graphing
Graphing Ordered Pairs67 Plotting Points69
Graphing Ordered Pairs70
Graphing Linear Equations71
Slope-Intercept Form
X- and Y-Intercepts76

X- and Y-Intercepts
Writing an Equation of a Line 77
Graphing Linear Inequalities79
Solving Systems of Linear
Equations by Graphing82
Solving Systems of Linear
Equations by Addition Method 85
Solving Systems of Linear
Equations by Multiplication
with Addition Method86
Solving Systems of Linear
Equations by Substitution87
Radicals
Simplifying Radicals88
Multiplying Radicals90
Dividing Radicals91
Adding and Subtracting
Radical Expressions92
Solving Equations by Taking
Square Roots93
Factoring
Solving Quadratic Equations
by Factoring94
Solving Equations by Taking
Square Roots95
Solving Quadratic Equations by
Taking Square Roots96
Logical Reasoning
and Application
Probability Experiment—
Directional Page97
Probability Experiment98
Answer Key 104

© 2009, Carson-Dellosa Publishing Company, Inc., Greensboro, North Carolina 27425. The purchase of this material entitles the buyer to reproduce worksheets and activities for classroom use only—not for commercial resale. Reproduction of these materials for an entire school or district is prohibited. No part of this book may be reproduced (except as noted above), stored in a retrieval system, or transmitted in any form or by any means (mechanically, electronically, recording, etc.) without the prior written consent of Carson-Dellosa Publishing Co., Inc.

Name Date	
-----------	--

Operations with Real Numbers

Integers are . . . ⁻5, ⁻4, ⁻3, ⁻2, ⁻1, 0, 1, 2, 3, 4, 5 . . .

There is a set of three dots before and after the list of integers. This means that the numbers continue, and there is no largest or smallest integer.

Looking at a number line, the integers to the right of zero are **positive integers** and the integers to the left of zero are **negative integers**. Zero is neither a positive integer nor a negative integer.

Natural numbers are all positive integers.

Whole numbers are comprised of zero and all of the positive integers.

Variables are letters of the alphabet that represent a number in mathematics. For example, in the problem 5x = 15, x is the variable.

The quotient of two integers is a **rational number**. A rational number can be written as $\frac{t}{x}$, in the case that t and x are integers and x is not equal to zero ($x \ne 0$). When a rational number is written this way, it is called a **fraction**.

It is important to note that every integer is a rational number. A decimal number, such as 12.6, is also considered a rational number. All rational numbers can be written as repeating or terminating decimals.

An **irrational number** is a number whose decimal expansion does not terminate and never repeats. For example $\pi = 3.141592604...$

Real numbers are made up of rational numbers and irrational numbers.

Name D

Date _____

Operations with Real Numbers

Patterns

The French mathematician Blaise Pascal developed a triangular pattern to describe the coefficients for the expansion of $(a + b)^n$, for consecutive values of n in rows. This pattern is referred to as Pascal's triangle.

In the triangular formation below, note that $(a + b)^0 = 1$ and $(a + b)^1 = a + b$.

Part A. Fill in the blanks in Pascal's triangle to extend the pattern.

n = 0

0

n = 1

1 1

1

n = 2

1 2 1

n = 3

1 3 3 1

n = 4

1 ____ 6 ____

n = 5

____ 10 ____

n = 6

__ _ _ _ _ _ _ _ _ _

n = 7

n = 8

___ __ __ __ __ __ __ __ ___

n = 9

n = 10

Part B. Use Pascal's triangle to find the coefficients of the expansion (a + b).

1. $(a + b)^3 = \underline{\hspace{1cm}} a^3 + \underline{\hspace{1cm}} a^2b + \underline{\hspace{1cm}} ab^2 + \underline{\hspace{1cm}} b^3$

2. $(a+b)^6 = \underline{\hspace{1cm}} a^6 + \underline{\hspace{1cm}} a^5b + \underline{\hspace{1cm}} a^4b^2 + \underline{\hspace{1cm}} a^3b^3 + \underline{\hspace{1cm}} a^2b^4 + \underline{\hspace{1cm}} ab^5 + \underline{\hspace{1cm}} b^6$

3. $(a+b)^4 = \underline{\qquad} a^4 + \underline{\qquad} a^3b + \underline{\qquad} a^2b^2 + \underline{\qquad} ab^3 + \underline{\qquad} b^4$

4. $(a+b)^7 = \underline{\qquad} a^7 + \underline{\qquad} a^6b + \underline{\qquad} a^5b^2 + \underline{\qquad} a^4b^3 + \underline{\qquad} a^3b^4 + \underline{\qquad} a^2b^5 + \underline{\qquad} b^7$

Name____

Date

Operations with Real Numbers

Patterns

Carefully study the patterns of numbers to complete each pattern.

3. 3, 6, 7, 14, 15, 30, 31, ______, _____, ______, ________

6. $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, $\frac{5}{6}$, $\frac{6}{7}$, ...,

Challenge!

The following is a special pattern called the Fibonacci sequence. See if you can discover and complete this interesting pattern.

1, 1, 2, 3, 5, 8, 13, ______, _____, ______, _________

Adding Real Numbers

Add.

1.
$$2.7 + (-4.8) =$$

3.
$$-55 + (-8) + (-4) + 54 =$$

5.
$$10 + 7 + (-7) + (-10) =$$

7.
$$10 + 7 + (-16) + 9 + (-30) =$$

9.
$$2.76 + (-6.56) + (-9.72) =$$

11.
$$2\frac{3}{5} + 4\frac{3}{7} =$$

13.
$$3\frac{5}{8} + (-1\frac{2}{3}) + 2 =$$

15.
$$7.3 + (3.9) =$$

2.
$$1.45 + 2.65 + (-9.43) =$$

6.
$$16 + 21 + (-3) + 7 =$$

8.
$$5.8 + 8.4 =$$

10.
$$8 + (-7) =$$

12.
$$-8\frac{3}{5} + 3\frac{3}{7} =$$

14.
$$-5\frac{3}{4} + (-2\frac{3}{4}) + 8 =$$

16.
$$-21 + 12 + (-1) + (-17) =$$

18.
$$-2\frac{3}{5} + (-5\frac{3}{7}) + 3 =$$

20.
$$-3\frac{1}{6} + (-9\frac{3}{12}) + 6 =$$

Adding Real Numbers

$$^{-}6 + 3 = ^{-}3$$

Add.

1.
$$2\frac{3}{5} + (-3\frac{2}{5}) + -6 =$$

3.
$$12 + (-9) + 17 =$$

5.
$$1 + ^-5 + (^-5) + 1 =$$

7.
$$3 + (-3) + 4 + (-5) =$$

9.
$$3.6 + (-2.5) + -5.5 =$$

11.
$$2 + 5 + -3 =$$

13.
$$-7\frac{2}{4} + 2\frac{3}{4} =$$

15.
$$8.43 + (-10.98) + (-3.23) =$$

17.
$$-2\frac{1}{3} + (-5\frac{7}{10}) + (-7) =$$

19.
$$2\frac{1}{2} + 6\frac{1}{2} =$$

2.
$$21 + 9 + (-6) + 7 =$$

4.
$$2.54 + -5.87 + -32.65 =$$

6.
$$21 + 3 + (-13) + 22 =$$

8.
$$3.3 + (-3.4) + 5.5 =$$

10.
$$-0.6 + (-0.56) + 3 =$$

14.
$$34 + (-13) + 18 + 0 + 34 =$$

16.
$$2.54 + (-5.21) + (-6.34) =$$

18.
$$-1\frac{2}{3} + (-3\frac{3}{5}) + 4 =$$

20.
$$4\frac{3}{5} + (-3\frac{2}{5}) + (-8) =$$

Subtracting Real Numbers

$$10 - (-4) = 10 + 4 = 14$$

Subtract.

1.
$$9 - (-32) =$$

3.
$$\frac{3}{5} - \frac{7}{8} =$$

7.
$$-43 - 6 =$$

9.
$$35 - 67 - 85 - 21 - 12 =$$

11.
$$18 - (-13) =$$

13.
$$-\frac{4}{7} - \frac{1}{3} - (\frac{2}{3}) =$$

15.
$$8 - 2.8 =$$

6.
$$9.432 + 4.348 - 44.938 =$$

8.
$$9 - (-2) - 8 - 7 =$$

10.
$$12 - 7 - (-16) - 9 - (-34) =$$

12.
$$-\frac{2}{5} - \frac{3}{4} - (-\frac{4}{5}) =$$

16.
$$8 - (-14) =$$

18.
$$-7 - (-3) =$$

Subtracting Real Numbers

$$4 - (-5) = 4 + 5 = 9$$

Subtract.

1.
$$-9 - (-5) =$$

3.
$$\frac{2}{3} - \frac{4}{5} =$$

7.
$$245 - 32 - (-36) =$$

9.
$$8 - (-5) - 7 - 9 =$$

13.
$$-\frac{2}{3} - \frac{1}{3} - (-\frac{1}{3}) =$$

19.
$$23 - (-21) =$$

6.
$$-19 - 8 =$$

10.
$$43 - 88 - 35 - 21 =$$

12.
$$^{-}45 - 5 =$$

14.
$$-\frac{4}{5} - \frac{1}{2} - \frac{2}{5} =$$

16.
$$7 - (-33) =$$

Multiplying Real Numbers

$$(-2)(-3) = 6$$

Multiply.

3.
$$\left(-\frac{5}{9}\right)(8.8) =$$

5.
$$(-3)(-9) =$$

7.
$$(12)(-3)(4) =$$

9.
$$(5)(2)(-1) =$$

11.
$$(-\frac{2}{3})(-1.6) =$$

13.
$$(54.2)(-3.55) =$$

15.
$$(7.44)(3.2)(4.3) =$$

17.
$$\left(-\frac{3}{5}\right)\left(\frac{3}{5}\right) =$$

19.
$$^{-}8 \cdot 12 =$$

2.
$$^{-}4 \cdot 12 =$$

8.
$$(-5)(-5)(-5) =$$

10.
$$(7)(-9)(-12) =$$

16.
$$(2.4)(-1.4) =$$

18.
$$\left(-\frac{4}{5}\right)(2.2) =$$

20.
$$(0)(2)(-213) =$$

Answer Key

Operations with Real Numbers

Patterns

The French mathematician Blaise Pascal developed a triangular pattern to describe the coefficients for the expansion of $(a + b)^n$, for consecutive values of n in rows. This pattern is referred to as

In the triangular formation below, note that $(a + b)^0 = 1$ and $(a + b)^1 = a + b$.

Part A. Fill in the blanks in Pascal's triangle to extend the pattern.

Part B. Use Pascal's triangle to find the coefficients of the expansion
$$(a+b)$$
.

1. $(a+b)^3 = \underline{1}_a a^3 + \underline{3}_a a^2 b + \underline{3}_a b^2 + \underline{1}_b b^3$

2. $(a+b)^6 = \underline{1}_a a^6 + \underline{6}_a a^5 b + \underline{15}_a a^4 b^2 + \underline{20}_a a^2 b^3 + \underline{15}_a a^2 b^4 + \underline{6}_a b^5 + \underline{1}_b a^6$

3. $(a+b)^4 = \underline{1}_a a^4 + \underline{4}_a a^3 b + \underline{6}_a a^2 b^2 + \underline{4}_a b a^3 + \underline{1}_b a^4$

4. $(a+b)^7 = \underline{1}_a a^7 + \underline{7}_a a^6 b + \underline{21}_a a^5 b^2 + \underline{35}_a a^4 b^3 + \underline{35}_a a^3 b^4 + \underline{21}_a a^2 b^5 + \underline{7}_a b^6 + \underline{1}_b b^7$

CD-104316 • © Carson-Dellosa

Operations with Real Numbers

Patterns

Carefully study the patterns of numbers to complete each pattern.

- **1.** 130, 120, 110, 100, **90** 80 70
- **3.** 3, 6, 7, 14, 15, 30, 31, **62 63 126**
- 4. 1, 4, 9, 16, 25, 36 49 64 81 100
- **5.** 1, 6, 5, 10, 9, 14, 13, **18**
- **7.** 17, 15, 25, 23, 33, 31, **41 39**
- 8. 7, 21, 63, 189, 567 1,701 5,103 15,309
- 9. 800, 80, 8, 0.8, 0.08, 0.008 0.0008 0.00008

Challenge! The following is a special pattern called the Fibonacci sequence. See if you can discover and complete this interesting pattern.

1, 1, 2, 3, 5, 8, 13, **21** 34 144

CD-104316 • © Carson-Dellosa

Operations with Real Numbers

Adding Real Numbers

-7 + 6 = -1

5.
$$10 + 7 + (-7) + (-10) =$$
0

10.
$$8 + (-7) = 1$$

11.
$$2\frac{3}{5} + 4\frac{3}{7} = 7\frac{1}{35}$$

12.
$$-8\frac{3}{5} + 3\frac{3}{7} = -5\frac{6}{35}$$

13.
$$3\frac{5}{8} + (-1\frac{2}{3}) + 2 = 3\frac{23}{24}$$

14.
$$-5\frac{3}{4} + (-2\frac{3}{4}) + 8 = -\frac{1}{2}$$

16.
$$-21 + 12 + (-1) + (-17) = -27$$

18.
$$-2\frac{3}{5} + (-5\frac{3}{7}) + 3 = -5\frac{1}{35}$$

20.
$$-3\frac{1}{6} + (-9\frac{3}{12}) + 6 = -6\frac{5}{12}$$

CD-104316 • © Carson-Dellosa

Answer Key

Operations with Real Numbers

Adding Real Numbers

-6 + 3 = -3

1.
$$2\frac{3}{5} + (-3\frac{2}{5}) + -6 = -6\frac{4}{5}$$
 2. $21 + 9 + (-6) + 7 = 31$

2.
$$21 + 9 + (-6) + 7 = 31$$

7.
$$3 + (-3) + 4 + (-5) = -1$$

10.
$$-0.6 + (-0.56) + 3 = 1.84$$

11.
$$2 + 5 + -3 = 4$$

13.
$$-7\frac{2}{4} + 2\frac{3}{4} = -4\frac{3}{4}$$

17.
$$-2\frac{1}{3} + (-5\frac{7}{10}) + (-7) = -15\frac{1}{30}$$
 18. $-1\frac{2}{3} + (-3\frac{3}{5}) + 4 = -1\frac{4}{15}$

18.
$$-1\frac{2}{3} + (-3\frac{3}{5}) + 4 = -1\frac{4}{15}$$

19.
$$2\frac{1}{2} + 6\frac{1}{2} = 9$$

20.
$$4\frac{3}{5} + (-3\frac{2}{5}) + (-8) = -6\frac{4}{5}$$

CD-104316 • © Carson-Dellosa

Operations with Real Numbers

Subtracting Real Numbers

10 - (-4) = 10 + 4 = 14

3.
$$\frac{3}{5} - \frac{7}{8} = -\frac{11}{40}$$

8.
$$9 - (-2) - 8 - 7 = -4$$

10.
$$12 - 7 - (-16) - 9 - (-34) = 46$$

12.
$$-\frac{2}{5} - \frac{3}{4} - (-\frac{4}{5}) = -\frac{7}{20}$$

13.
$$-\frac{4}{7} - \frac{1}{3} - (\frac{2}{3}) = -1\frac{4}{7}$$

CD-104316 • © Carson-Dellosa

Operations with Real Numbers

Subtracting Real Numbers

4 - (-5) = 4 + 5 = 9

Subtract.

3.
$$\frac{2}{3} - \frac{4}{5} = -\frac{2}{15}$$

9.
$$8 - (-5) - 7 - 9 = -3$$

13.
$$-\frac{2}{3} - \frac{1}{3} - (-\frac{1}{3}) = -\frac{2}{3}$$

14.
$$-\frac{4}{5} - \frac{1}{2} - \frac{2}{5} = -1\frac{7}{10}$$

CD-104316 • © Carson-Dellosa

Operations with Real Numbers

Multiplying Real Numbers

(-2)(-3) = 6

Multiply.

3.
$$(-\frac{5}{9})(8.8) = -4.\overline{8}$$

4.
$$(-3)(0) = 0$$

11.
$$(-\frac{2}{3})(-1.6) = 1.0\overline{6}$$

17.
$$\left(-\frac{3}{5}\right)\left(\frac{3}{5}\right) = -\frac{9}{25}$$

18.
$$\left(-\frac{4}{5}\right)(2.2) = -1.76$$

20.
$$(0)(2)(-213) = \mathbf{0}$$

CD-104316 • © Carson-Dellosa